u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila.

نویسندگان

  • Y Cubadda
  • P Heitzler
  • R P Ray
  • M Bourouis
  • P Ramain
  • W Gelbart
  • P Simpson
  • M Haenlin
چکیده

The pattern of the large sensory bristles on the notum of Drosophila arises as a consequence of the expression of the achaete and scute genes. The gene u-shaped encodes a novel zinc finger that acts as a transregulator of achaete and scute in the dorsal region of the notum. Viable hypomorphic u-shaped mutants display additional dorsocentral and scutellar bristles that result from overexpression of achaete and scute. In contrast, overexpression of u-shaped causes a loss of achaete-scute expression and consequently a loss of dorsal bristles. The effects on the dorsocentral bristles appear to be mediated through the enhancer sequences that regulate achaete and scute at this site. The effects of u-shaped mutants are similar to those of a class of dominant alleles of the gene pannier with which they display allele-specific interactions, suggesting that the products of both genes cooperate in the regulation of achaete and scute. A study of the sites at which the dorsocentral bristles arise in mosaic u-shaped nota, suggests that the levels of the u-shaped protein are crucial for the precise positioning of the precursors of these bristles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of Drosophila.

In Drosophila, the GATA family transcription factor Pannier and the Wnt secreted protein Wingless are known to be important for the patterning of the notum, a part of the dorsal mesothorax of the fly. Thus, both proteins are necessary for the development of the dorsocentral mechanosensory bristles, although their roles in this process have not been clarified. Here, we show that Pannier directly...

متن کامل

Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin.

The basic helix-loop-helix (bHLH) proneural proteins Achaete and Scute cooperate with the class I bHLH protein Daughterless to specify the precursors of most sensory bristles in Drosophila. However, the mechanosensory bristles at the Drosophila wing margin have been reported to be unaffected by mutations that remove Achaete and Scute function. Indeed, the proneural gene(s) for these organs is n...

متن کامل

The achaete–scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS

BACKGROUND The Drosophila central nervous system (CNS) develops from a segmentally reiterated array of 30 neural precursors. Each precursor acquires a unique identity and goes through a stereotyped cell lineage to produce an invariant family of neurons and/or glia. The proneural genes achaete, scute and lethal of scute are required for neural precursor formation in the Drosophila CNS, and are e...

متن کامل

The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila

Early in the development of the imaginal wing disc of Drosophila, the LIM-HD gene tailup (islet), together with the HD genes of the iroquois complex, specify the notum territory of the disc. Later, tailup has been shown to act as a prepattern gene that antagonizes formation of sensory bristles on the notum of this fly. It has been proposed that Tailup downregulates the expression of the proneur...

متن کامل

Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing.

Adult Drosophila possess a large number of sensory organs, including large and small bristles and other types of sensilla, each arising from a single mother cell at particular positions in a reproducible pattern. Genetic studies have shown that sensory organ pattern formation is partly coordinated by a number of structurally similar, potential heterodimer-forming, helix-loop-helix (HLH) regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 11 22  شماره 

صفحات  -

تاریخ انتشار 1997